164 research outputs found

    High-Fidelity Flash Lidar Model Development

    Get PDF
    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios

    A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    Get PDF
    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters

    Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    Get PDF
    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusio

    Automated, on-board terrain analysis for precision landings

    Get PDF
    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown

    Navigation Doppler Lidar for Autonomous Ground, Aerial, and Space Vehicles

    Get PDF
    A Doppler lidar instrument has been developed and demonstrated for providing critical vector velocity and altitude/range data for autonomous precision navigation. Utilizing advanced component technologies, this lidar can be adapted to different types of vehicles

    Discovery of a Nearly Edge-On Disk Around HD 32297

    Full text link
    We report the discovery of a nearly edge-on disk about the A0 star HD 32297 seen in light scattered by the disk grains revealed in NICMOS PSF-subtracted coronagraphic images. The disk extends to a distance of at least 400 AU (3.3") along its major axis with a 1.1 micron flux density of 4.81 +/-0.57 mJy beyond a radius of 0.3" from the coronagraphically occulted star. The fraction of 1.1 micron starlight scattered by the disk, 0.0033 +/- 0.0004, is comparable to its fractional excess emission at 25 + 60 micron of ~ 0.0027 as measured from IRAS data. The disk appears to be inclined 10.5 degrees +/- 2.5 degrees from an edge-on viewing geometry, with its major axis oriented 236.5 degrees +/- 1 degree eastward of north. The disk exhibits unequal brightness in opposing sides and a break in the surface brightness profile along NE-side disk major axis. Such asymmetries might implicate the existence of one or more (unseen) planetary mass companions.Comment: 12 pages, 2 figures, accepted for publication in ApJ

    Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    Get PDF
    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detectio

    Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation

    Get PDF
    3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications

    Development of a Coherent Doppler Lidar for Precision Maneuvering and Landing of Space Vehicles

    Get PDF
    A coherent Doppler lidar has been developed to address NASAs need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to planetary bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar, meets the required performance of landing missions while complying with vehicle size, mass, and power constraints. Operating from over five kilometers altitude, the lidar obtains velocity and range precision measurements with 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. After a series of flight tests onboard helicopters and rocket-powered free-flyer vehicles, the Navigation Doppler Lidar is now being ruggedized for future missions to various destinations in the solar system

    NICMOS Imaging of the HR 4796A Circumstellar Disk

    Get PDF
    We report the first near infrared (NIR) imaging of a circumstellar annular disk around the young (~8 Myr), Vega-like star, HR 4796A. NICMOS coronagraph observations at 1.1 and 1.6 microns reveal a ring-like symmetrical structure peaking in reflected intensity 1.05 arcsec +/- 0.02 arcsec (~ 70 AU) from the central A0V star. The ring geometry, with an inclination of 73.1 deg +/- 1.2 deg and a major axis PA of 26.8 deg +/- 0.6 deg, is in good agreement with recent 12.5 and 20.8 micron observations of a truncated disk (Koerner, et al. 1998). The ring is resolved with a characteristic width of less than 0.26 arcsec (17 AU) and appears abruptly truncated at both the inner and outer edges. The region of the disk-plane inward of ~60 AU appears to be relatively free of scattering material. The integrated flux density of the part of the disk that is visible (greater than 0.65 arcsec from the star) is found to be 7.5 +/- 0.5 mJy and 7.4 +/- 1.2 mJy at 1.1 and 1.6 microns, respectively. Correcting for the unseen area of the ring yields total flux densities of 12.8 +/- 1.0 mJy and 12.5 +/- 2.0 mJy, respectively (Vega magnitudes = 12.92 /+- 0.08 and 12.35 +/-0.18). The NIR luminosity ratio is evaluated from these results and ground-based photometry of the star. At these wavelengths Ldisk(lambda)/L*(lambda) = 1.4 +/- 0.2E-3 and 2.4 +/- 0.5E-3, giving reasonable agreement between the stellar flux scattered in the NIR and that which is absorbed in the visible and re-radiated in the thermal infrared. The somewhat red reflectance of the disk at these wavelengths implies mean particle sizes in excess of several microns, larger than typical interstellar grains. The confinement of material to a relatively narrow annular zone implies dynamical constraints on the disk particles by one or more as yet unseen bodies.Comment: 14 pages, 1 figure for associated gif file see: http://nicmosis.as.arizona.edu:8000/AAS99/FIGURE1_HR4796A_ApJL.gif . Accepted 13 January 1999, Astrophyical Journal Letter
    corecore